메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Seon Ah Lim (Ewha Womans University)
저널정보
대한생화학·분자생물학회 BMB Reports BMB Reports Vol.57 No.9
발행연도
2024.9
수록면
388 - 399 (12page)
DOI
https://doi.org/10.5483/BMBRep.2024-0031

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Immunotherapy represents a promising treatment strategy fortargeting various tumor types. However, the overall responserate is low due to the tumor microenvironment (TME). In theTME, numerous distinct factors actively induce immunosuppression,restricting the efficacy of anticancer immune reactions. Recently, metabolic reprogramming of tumors has been recognizedfor its role in modulating the tumor microenvironmentto enhance immune cell responses in the TME. Furthermore,recent elucidations underscore the critical role of metaboliclimitations imposed by the tumor microenvironment on theeffectiveness of antitumor immune cells, guiding the developmentof novel immunotherapeutic approaches. Hence, achievinga comprehensive understanding of the metabolic requirementsof both cancer and immune cells within the TME is pivotal. Thisinsight not only aids in acknowledging the current limitations ofclinical practices but also significantly shapes the trajectory offuture research endeavors in the domain of cancer immunotherapy. In addition, therapeutic interventions targeting metaboliclimitations have exhibited promising potential as combinatorytreatments across diverse cancer types. In this review, we firstdiscuss the metabolic barriers in the TME. Second, we explorehow the immune response is regulated by metabolites. Finally,we will review the current strategy for targeting metabolism tonot simply inhibit tumor growth but also enhance antitumorimmune responses. Thus, we could suggest potent combinationtherapy for improving immunotherapy with metabolic inhibitors.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0