메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
A Sediyo Adi Nugraha (Universitas Gadjah Mada) Muhammad Kamal (Universitas Gadjah Mada) Sigit Heru Murti (Universitas Gadjah Mada) Wirastuti Widyatmanti (Universitas Gadjah Mada)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제40권 제4호
발행연도
2024.8
수록면
397 - 418 (22page)
DOI
https://doi.org/10.7780/kjrs.2024.40.4.7

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The Land Surface Temperature (LST) is a crucial parameter in identifying drought. It is essentialto identify how LST can increase its accuracy, particularly in mountainous and hill areas. Increasing theLST accuracy can be achieved by applying early data processing in the correction phase, specifically in thecontext of topographic correction on the Lambertian model. Empirical evidence has demonstrated thatthis particular stage effectively enhances the process of identifying objects, especially within areas that lackdirect illumination. Therefore, this research aims to examine the application of the Lambertian model inestimating LST using the Multi-Channel Method (MCM) across various physiographic regions. Lambertianmodel is a method that utilizes Lambertian reflectance and specifically addresses the radiance valueobtained from Sun-Canopy-Sensor (SCS) and Cosine Correction measurements. Applying topographicaladjustment to the LST outcome results in a notable augmentation in the dispersion of LST values. Nevertheless, the area physiography is also significant as the plains terrain tends to have an extreme LSTvalue of ≥ 350 K. In mountainous and hilly terrains, the LST value often falls within the range of 310–325K. The absence of topographic correction in LST results in varying values: 22 K for the plains area, 12–21K for hilly and mountainous terrain, and 7–9 K for both plains and mountainous terrains. Furthermore,validation results indicate that employing the Lambertian model with SCS and Cosine Correction methodsyields superior outcomes compared to processing without the Lambertian model, particularly in hilly andmountainous terrain. Conversely, in plain areas, the Lambertian model’s application proves suboptimal. Additionally, the relationship between physiography and LST derived using the Lambertian model showsa high average R2 value of 0.99. The lowest errors (K) and root mean square error values, approximately ±2K and 0.54, respectively, were achieved using the Lambertian model with the SCS method. Based on thefindings, this research concluded that the Lambertian model could increase LST values. These correctedvalues are often higher than the LST values obtained without the Lambertian model.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0