메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lin He (Chungnam National University) Mi-Hyun Lee (National Institute of Agricultural Sciences) Jun Myoung Yu (Chungnam National University)
저널정보
한국식물병리학회 Research in Plant Disease(식물병연구) Research in Plant Disease(식물병연구) 제30권 제4호
발행연도
2024.12
수록면
393 - 401 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fire blight and black shoot blight are two major bacterial diseases that affect apple and pear production in Korea and are caused by Erwinia amylovora and E. pyrifoliae, respectively. These diseases have recently reached epidemic levels, heightening the risk of coinfection within orchards and even individual trees. Traditional detection methods often fail to distinguish between these pathogens due to their similar characteristics and disease symptoms creating an urgent need for improved detection tools. In this study, we developed a novel droplet digital polymerase chain reaction (ddPCR) technique that specifically quantifies E. amylovora, with a detection range of 10³ to 10<sup>7</sup> cfu/ml for cell culture templates and copies/ml for genomic DNA templates. The ddPCR platform is equipped with two fluorescence channels (FAM and HEX/VIC) and was further applied to develop a duplex ddPCR method for the simultaneous detection and absolute quantification of both pathogens. The method was tested on mixed DNA and cell cultures of E. amylovora and E. pyrifoliae and successfully quantified both pathogens within a single reaction. Moreover, duplex ddPCR effectively identified both pathogens in fruits artificially inoculated with various bacterial mixtures. This study provides valuable insights for addressing the cooccurrence of Erwinia diseases in orchards and offers a promising approach for precise diagnosis in plant disease management.

목차

Introduction
Materials and Methods
Results
Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092294471