메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Heeseok Jang (Humax PARCS) Dinesh Elayaperumal (Humax PARCS) Kijong Uhm (Humax PARCS) Kwanyoung Jung (Humax PARCS)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2024년 한국자동차공학회 추계학술대회 및 전시회
발행연도
2024.11
수록면
3,066 - 3,075 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Modern society has become more convenient and dynamic due to the development of cutting-edge technology aligned with the Fourth Industrial Revolution. The increase in population in modern cities has led to a rise in vehicle ownership, necessitating larger parking spaces. To control traffic and maintain parking systems, governments urgently need an efficient parking management system (PMS). Furthermore, the establishment of an automated valet parking system (AVPS) in accordance with the international standard ISO 23374 is essential. This work proposes a smart PMS framework that utilizes deep learning models to improve parking efficiency. The system employs fisheye cameras installed at key locations in parking lots. Our approach efficiently handles the wide distortion angle from fisheye cameras and easily identifies vehicles from captured images, despite using a limited number of cameras. The proposed system conducts experimental studies using recent deep learning models such as YOLOv8 and YOLOv10 for their efficiency and accuracy in object detection. To analyze the proposed detection model, we created customized parking datasets from various indoor parking sites. The system efficiently recognizes vehicle movement and determines parking occupancy in customized environments. Performance analysis reveals that the proposed YOLOv8 models are more efficient and suitable for customized parking applications. These models offer a promising solution for improving parking management in modern urban settings.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. EXPERIMENT SETUP
4. EXPERIMENT RESULTS
5. CONCLUSION AND FUTURE STUDY
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0