메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Nandat Fanzury (Changwon University) Aria Bisma Wahyutama (Changwon University) Yunsu Kim (Changwon University) Hoon Lee (Changwon University) Mintae Hwang (Changwon University) Jongwon Seok (Changwon University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2024 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.15 No.1
발행연도
2024.1
수록면
7 - 10 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents an intermediate result of an automatic multiple coin with mixed currencies identification using object detection. It is a part of the grand research with the final objective of developing a real-time object detection system that can simultaneously identify multiple coins and banknotes in mixed currencies in a mobile application. The system is intended for coin and banknotes in mixed currencies in a mobile application. The system is intended for coin and banknote collectors or tourists who have traveled to multiple countries to identify them. The dataset for this research is gathered from open-source platforms such as Kaggle and Google Images and is carefully curated to collect high-quality dataset. This paper will show the result of the trained You Only Look Once (YOLO)v5 algorithm running on a Windows PC using Jupyter Notebook to identify the United States Dollar, European Euro, and Chinese Yuan coin denominations. In the simulation, the model produced a precision score of 0.892, a recall score of 0.932, a map@0.5 score of 0.954, and a map@0.5:9.5 score of 0.837. These results show a promising performance that can be further enhanced by adding more countries to the model and implementing it as an application for the following research stage.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODEL AND METHODS
Ⅲ. RESULTS
Ⅳ. CONCLUSIONS AND FUTURE STUDIES
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0