메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이서현 (인사이트마이닝) 이재원 (국방기술품질원) 임재학 (한밭대학교)
저널정보
한국신뢰성학회 신뢰성응용연구 신뢰성응용연구 제24권 제4호
발행연도
2024.12
수록면
414 - 422 (9page)
DOI
10.33162/JAR.2024.12.24.4.414

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: A failure databook provides failure rate information to assess system reliability. Such databooks have been developed and adopted in industries across several countries. Recently, a
Korean-style failure rate databook, based on the field failure data of weapon systems, has been developed and distributed to defense industries. A critical aspect of a databook's development is the categorization of items, which is a time-intensive process. This study aims to support the classification of new items by evaluating the accuracy of five string similarity algorithms.
Methods: The similarity algorithms considered in this study include the Jaro‒Winkler similarity, longest common subsequence (LCS) similarity, N-gram similarity, Levenshtein similarity, and Hamming similarity. To assess the accuracy of these algorithms, verification items were extracted through stratified sampling from the Korean failure rate databook, with the remaining items designated as reference data. Simulations were conducted by treating the verification items as new entries and evaluating how accurately each algorithm recommended the optimal major classification for these items.
Results: The simulation results revealed that the Jaro‒Winkler similarity algorithm achieves the highest overall recommendation accuracy, followed by the LCS and N-gram similarity algorithms. Furthermore, as the number of recommended categories increases, the difference in accuracy between the Jaro‒Winkler and LCS algorithms becomes negligible.
Conclusion: The findings of this study can be applied to automate item classification during the revision of failure rate databooks. Additionally, collecting supplementary data beyond item names could enable the development of advanced item classification recommendation techniques using various big data analysis methods.

목차

1. 서론
2. 문자열 유사도 알고리즘
3. 사도 알고리즘 성능 평가 방법 및 절차
4. 유사도 알고리즘 성능 평가 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091263703