메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kintoh Allen Nfor (Inje University) Kamese Jordan Junior (Inje University) Tagne Poupi Theodore Armand (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2024년도 추계종합학술대회 논문집 제28권 제2호
발행연도
2024.10
수록면
67 - 70 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Named Entity Recognition (NER) is a theoretical concept and a practical tool with significant applications in the food industry. Our research, which is novel in its approach, focuses on extracting and categorizing food items, ingredients, nutritional information, allergens, preparation methods, quantities, and more from unstructured text data like recipes and product descriptions. This capability supports personalized nutrition, food safety, and regulatory compliance by automatically identifying and classifying critical information. We developed a Bidirectional Long Short-Term Memory (BiLSTM) model using pre-trained GloVe (Global Vectors for Word Representation) embeddings to capture contextual relationships in food-related texts. We then introduced a custom-weighted categorical cross-entropy loss function to improve the recognition of less frequent entities. Enhancing this model further, we added an attention mechanism, which dynamically focuses on essential words and captures complex relationships, thereby improving the model’s performance. To optimize the model, we introduced hyperparameter tuning and K-fold cross-validation. Our final architecture, a unique combination of a DenseNet-inspired dense block with BiLSTM and attention layers with convolutional operations for advanced feature extraction, achieved a high F1- score of 99.66%, bypassing state-of-the-art by a significant margin. This progression from a basic BiLSTM to an advanced model improves the accuracy and reliability of NER in the food industry, supporting various practical applications like food safety, policy compliance, dietary assessment, and personalized nutrition.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Methodology
Ⅲ. Experimental Results
Ⅴ. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0