메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yuyang Zeng (Sichuan Agricultural University) Ruirui Zhang (Sichuan Agricultural University) Liang Yang (Sichuan Agricultural University) Sujuan Song (Sichuan Agricultural University)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제17권 제4호
발행연도
2021.8
수록면
818 - 833 (16page)
DOI
10.3745/JIPS.04.0221

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability inexisting text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neuralnetwork, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese textdata was converted into vectors through the method of transfer learning by Word2Vec. Second, local featureswere extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural networkand the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequencyinversedocument frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU)models, the CNN-BiLSTM-TE model’s F1-score was higher than other models by 0.0147, 0.006, and 0.0052,respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score washigher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TEmodel can effectively improve various indicators in application. Lastly, performed scalability verificationthrough a takeaway dataset, which has great value in practical applications.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0