메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
노윤정 (동명대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제25권 제2호
발행연도
2024.6
수록면
119 - 126 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 대학생의 중도탈락에 영향을 주는 주요 패턴을 기계 학습하여 대학 중도탈락에 대한 조기 경보 시스템의 타당성을 평가하고 적극적으로 예방할 수 있는 시스템의 구현 방안을 제시하고자 한다. 이를 위해 한국교육개발원에서 실시한 한국교육종단연구 2005(Korean Educational Longitudinal Study, 2005)의 데이터를 사용하여 기계학습 기반의 5종의 알고리즘을 이용하여 성능 비교 실험을 실시하였다. 실험결과, 중도탈락 의도를 가진 학생의 식별 정확률(precosion)은 랜덤 포레스트(Random Forest)를 사용할 때 최대 94.0%, 중도탈락 의도를 가진 학생의 재현율(recall)은 Logistic Regression를 사용할 때 최대 77.0%로 측정되었다. 마지막으로 가장 높은 예측 모델을 바탕으로 중도탈락 가능성이 높은 학생을 상담 관리하며 특히, 특성별로 높은 중요도를 보이는 요인을 상담법 모델에 적용하고자 한다. 본 연구는 중도탈락이 대학과 개인에게 있어 큰 비용을 초래함과 대학생들이 직면한 진로 문제를 해결하기 위해 IT 기술을 활용한 모델을 구현하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0