메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
남의석 (Far East University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제73권 제10호
발행연도
2024.10
수록면
1,711 - 1,717 (7page)
DOI
10.5370/KIEE.2024.73.10.1711

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, in order to optimize the biological water treatment process, we review three representative methods among XAI's post-hoc explainability techniques. Among them, LIME and AEA methods are applied to the water treatment biological process to find an optimization method. presented. XAI's post-hoc explainability technique is applied to solve the black box problem of not knowing what is attributable to the water treatment artificial intelligence model, which is commonly used in water treatment process optimization, even if it produces good results. We analyzed which control variables were responsible for the improvement in the quality of treated water. As a result of the analysis, it was confirmed that the LIME method had a greater influence on the quality of treated water than the AEA method. In addition, it was found that this method contributes to solving the black box problem and improving the quality of treated water. In the case of the LIME method applied to the water treatment biological process in this paper, although it is not common, it was possible to analyze the characteristics of output variables even for input variables other than control variables by observing the results graphically. In the future, it is believed that by systematizing such graph analysis into an algorithm, it will be possible to propose a more effective LIME method.

목차

Abstract
1. 서론
2. 생물학적 수처리 공정의 모델링
3. XAI(eXplainable AI)
4. 제안된 기법
5. 시뮬레이션
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091088648