메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nitin Srivastava (Sharda University) Lavish Kumar Singh (Sharda University) Manoj Kumar Yadav (Ajay Kumar Garg Engineering College)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.30 No.4
발행연도
2024.4
수록면
1,106 - 1,122 (17page)
DOI
10.1007/s12540-023-01552-1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Achieving optimal results for enhanced performance of aluminum metal matrix necessitated a substantial amount of effort,as it entailed investing additional resources in terms of time, finances, and rigorous testing. The objective of the proposedwork is to examine and analyze the impact of various stir-casting parameters, including the proportion of reinforcement,stirring time, stirring speed, and processing temperature, on the composite AlP0507-RHA-MWCNT. The Taguchi techniqueis used to identify the optimized parameters for the optimization of toughness, tensile strength, and hardness of stir-castedcomposite specimens. The analysis of the signal-to-noise ratio (S/N ratio) reveals that the samples containing 6% RHA and2% MWCNT, subjected to a stirring speed of 100 rpm, a stirring time of 10 min, and a processing temperature of 800 °C,exhibit the highest tensile strength. The study on the S/N ratio reveals that the samples containing 6% RHA and 2% MWCNT,subjected to a stirring speed of 100 rpm, a stirring time of 10 min, and a processing temperature of 850 °C, exhibit favorablehardness values. The S/N ratio indicates that the hybrid composite having 4% RHA and 2% MWCNT stirred for 5 min with300 rpm and 800 °C processing temperature exhibits the highest toughness. Using ANN, the mean regression coefficientwas found to be 0.99477, which was very close to 1, which shows a strong association between expected and observedexperimental output.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0