메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Arakawa Hiroyuki (Kyushu University) Fujibuchi Toshioh (Kyushu University) Kaneko Kosuke (Robert T.Huang Entrepreneurship Center, Kyushu University, Fukuoka) Okada Yoshihiro (Innovation Center for Educational Resources of Kyushu University Library, Kyushu University) Tomisawa Toshiko (Department of Nursing Science, Hirosaki University Graduate School of Health Sciences)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.6
발행연도
2024.6
수록면
2,428 - 2,435 (8page)
DOI
10.1016/j.net.2024.01.057

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Training for radiation protection and control requires a visual understanding of radiation, which cannot be perceived by the human senses. Trainees must also master the effective use of measuring instruments. Traditionally, such training has exposed trainees to radiation sources. Here, we present a novel e-training strategy that enables safe, exposure-free handling of a radiation measuring tool called a survey meter. Our mixed reality radiation-training system merges the physical world with a digital one. Collaborating with a mixed reality headset (HoloLens 2), this system constructs a mock-up of a survey meter in real-world space. The HoloLens 2 employs a browser-based application to visualize radiation and to simulate/share the use of the survey meter, including its physical movements. To provide a dynamic learning experience, the system adjusts the surveymeter mock-up readings according to the operator’s movements, distance from the radiation source, the response time of survey meter, and shielding levels. Through this approach, we expect that trainees will acquire practical skills in interpreting survey-meter readings and gain a visual understanding of radiation in real-world situations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0