메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Appavu Kiruthika (경상국립대학교) Jeonghwa Hong (경상국립대학교) Karuppanasamy Kalaiselvi (경상국립대학교) Seonghyeon Moon (경상국립대학교)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2024년 대한산업공학회 추계학술대회
발행연도
2024.10
수록면
595 - 602 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the aftermath of earthquakes, both living and non-living structures often suffer extensive damage, making rescue operations challenging and critical. The deployment of drones in earthquake disaster
management has emerged as a valuable innovation, offering real-time aerial imagery that can significantly enhance rescue efforts. This research focuses on the application of drone-captured images to identify and prioritize affected individuals using advanced machine-learning (ML) techniques. Specifically, we are developing a model utilizing You Only Look Once (YOLO) and Convolutional Neural Networks (CNN) to analyze drone images for detecting injured or distressed individuals. The primary objective of this model is to ensure the safety and well-being of individuals impacted by the earthquake. In addition to
prioritizing human safety, the research aims to facilitate the restoration of essential services such as electricity, which is critical for effective rescue operations and the overall comfort of affected individuals. The study will also explore the creation of a strategic plan that outlines a clear and actionable pathway for search and rescue teams (SAR). This plan will guide the teams in efficiently navigating the disaster area and executing their rescue operations systematically. By integrating these technological advancements with strategic planning, the research aims to enhance the efficiency and effectiveness of earthquake
disaster response, ultimately improving outcomes for those affected by such catastrophic events.

목차

Abstract
1. Introduction
2. Literature Review
3. Proposed Model
4. Results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091163128