메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seo, Keonwon (Kyungpook National University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제42권 제5호
발행연도
2024.10
수록면
435 - 441 (7page)
DOI
10.7848/ksgpc.2024.42.5.435

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, large datasets have been provided for DL (Deep Learning) to train the neural network in calculating camera poses and object depths from images. The datasets were typically obtained using RGB-D (Red, Green, Blue, and Depth) cameras, however, which have limitations in capturing depths in many cases. To overcome the limitations of RGB-D cameras, many DL approaches have been proposed to overcome the problems. However, the accuracy potentials of pose and depth calculated by DL approaches have not been studied well. Thus, this study selected the ScanNet dataset for the experiment and presents a method to evaluate the accuracy of pose and depth that can be obtained using point matching and homography. From the pairs of matching points in two views, their fundamental matrix, essential matrix, and camera matrix were reconstructed and then the camera pose and depth were calculated. The experimental results show that the relative rotation angles were calculated accurately by using homography and the translation angles were calculated less accurately than the rotation angles. In addition, the experiments show that the depths of matching points could be calculated with reasonable accuracy by using the camera matrix constructed by matching.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091070011