메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Haeri An (Shingu College)
저널정보
ICT플랫폼학회 JOURNAL OF PLATFORM TECHNOLOGY JOURNAL OF PLATFORM TECHNOLOGY Vol.12 No.4
발행연도
2024.8
수록면
3 - 14 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The big data logs generated from digital content consumption are crucial resources for companies to understand user behavior, provide personalized services, and optimize business strategies. This paper presents effective methods for collecting, storing, preprocessing, analyzing, and utilizing digital content consumption logs. Through these methods, digital content companies can improve user experience, enhance operational efficiency, and strengthen their competitiveness.
This paper analyzes various case studies involving real-time monitoring and problem-solving using log data, personalized recommendation systems, and strategies to improve user experience. Specifically, it presents concrete methods for data-driven innovation through successful log data utilization strategies employed by companies such as Netflix, YouTube, Amazon, and Instagram.
Future research should include the development of an integrated system architecture for big data log processing, encompassing data collection, storage, processing, analysis, and visualization. Such an integrated system design will enable companies to utilize log data more efficiently and respond quickly to rapidly changing market environments.
The digital content industry will continue to evolve through the analysis and optimization of big data logs. By implementing the strategies presented in this paper, companies can achieve better user experiences and higher business performance.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Importance of Big Data Logs in Digital Content
Ⅲ. Collection and Storage of Digital Content Consumption Logs
Ⅳ. Log Data Preprocessing
Ⅴ. Log Data Analysis
Ⅵ. Utilization Strategies for Log Data
Ⅶ. Case Studies
Ⅷ. Conclusion
IX. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091061843