메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성명제 (한국산업공해연구소) 이상섭 (충북대학교)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제40권 제5호
발행연도
2024.10
수록면
528 - 540 (13page)
DOI
10.5572/KOSAE.2024.40.5.528

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Air pollutants in the Cheongju Industrial Complex were analyzed from January 2018 to December 2023. The analyzed pollutants include PM10, PM<SUB>2.5</SUB>, Pb, Cd, Cr, Cu, Mn, Fe, Ni, As, SO₂, NO₂, CO, benzene, toluene, ethylbenzene, and xylene. The main wind directions in Cheongju were south-southeast in July and August, northeast in September, and westerly in other months. The lowest pollutant concentrations were mostly observed in July, August, and September. This is likely related to the fact that wind directions other than from the west affect Cheongju more during these months. This also suggests that the region is significantly affected by air pollutants coming from the west. On the other hand, Ni showed higher concentrations during September, October, and November. Correlation analysis results showed that PM<SUB>10</SUB> had the highest correlation coefficient with Fe, whereas PM<SUB>2.5</SUB> had the highest correlation with Pb. Considering that Fe mainly originates from natural sources and Pb from anthropogenic sources, the results suggest that PM2.5 is more influenced by human activities. Multiple linear regression analysis confirmed these findings. Consequently, a regression model for PM10 was derived using Fe, Cr, and temperature as independent variables, while a regression model for PM<SUB>2.5</SUB> was derived using Pb, Fe, Cr, temperature, and toluene as independent variables. All regression models were statistically significant and effectively predicted PM<SUB>10</SUB> and PM<SUB>2.5</SUB> concentrations.

목차

Abstract
1. 서론
2. 연구 방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-090975473