메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Selina S. Sung (Sogang University) Jungmin So (Sogang University) Tae-Jin Yoon (Sungshin Women’s University) Seunghee Ha (Hallym University)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제16권 제3호
발행연도
2024.9
수록면
87 - 94 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Children with speech sound disorders (SSDs) face various challenges in producing speech sounds, which often lead to significant social and educational barriers. Detecting and treating SSDs in children is complex due to the variability in disorder severity and diagnostic boundaries. This study aims to develop an automated SSD detection system using deep learning models, leveraging their ability to transcribe audio, efficiently capture sound patterns on a vast scale, and address the limitations of traditional methods involving speech-language pathologists. For this study, we collected audio recordings from 573 children aged two to nine using standardized prompts from the Assessment of Phonology and Articulation for Children. Speech-language pathologists analyzed the recordings and identified 92 children with SSDs. To build an automatic SSD detection system, we used a dataset to train neural network models for automatic speech recognition and audio classification. Five different methods are studied, with the best method achieving 73.9% unweighted average recall. While the results show the potential of using deep learning models for the automatic detection of SSDs in children, further research is needed to improve the reliability of the models widely used in practice.

목차

Abstract
1. Introduction
2. The Korean Children Speech Sound Disorder (SSD) Dataset
3. Speech Sound Disorder (SSD) Detection Methods
4. Performance Evaluation
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-090942134