메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정수민 오현진 정은혜 조수현 (명지대학교)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제35권 제5호
발행연도
2024.9
수록면
629 - 639 (11page)
DOI
10.7465/jkdi.2024.35.5.629

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
개인화 서비스의 중요도가 높아짐에 따라 다양한 산업 간 데이터 결합이 활성화되고 있다. 그러나 기존 데이터 결합 방식은 민감한 정보를 포함한 데이터를 직접 주고 받기 때문에 개인정보 유출 가능성이 높다는 문제점을 가지고 있다. 이에 본 연구에서는 성별 또는 연령과 같은 최소한의 고유정보를 활용해 데이터를 결합하는 방식을 제안한다. 데이터 보안을 강화하기 위해 연합 학습 (Federated learning)과 분할 학습 (Split learning)을 차용하여 모델을 학습시켰으며, 그 결과 SEC 프로세스를 통해 데이터를 결합한 경우, 결합 전 단일일 데이터에 비해 더욱 향상된 예측 성능을 보였다. 이처럼 SEC 프로세스를 통해 최소한의 고유정보를 사용한 데이터 결합은 개인정보를 침해를 예방하여 프라이버시 보호를 강화한다는 점에서 기존 데이터 결합 방식의 문제 개선과 더불어, 더욱 향상된 예측을 통해 다양한 서비스에 적용할 수 있을 것으로 기대된다.

목차

요약
1. 서론
2. 이론적 배경
3. 연구 방법론
4. 분류 모델 및 결과
5. 결론
References
Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0