메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Doun Jeon (The Cyber University of Korea) Hansung Kim (The Cyber University of Korea)
저널정보
한국컴퓨터교육학회 컴퓨터교육학회 논문지 컴퓨터교육학회논문지 제27권 제6호
발행연도
2024.9
수록면
83 - 96 (14page)
DOI
10.32431/kace.2024.27.6.009

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For students to avail of educational opportunities without discrimination, it is necessary to promote customized policies for vulnerable groups at substantial risk of insolvency, rather than limiting the targets of student loans. This study proactively identifies the risk of student loan defaults and analyzes the key causal factors for it in order to suggest policies that enhance financial stability. To this end, this study utilizes data from the Korea Student Aid Foundation (KOSAF), a national institution, and, using various machine learning models, constructs a model to predict student loan default. The analysis applies the Random Forest, XGBoost, CatBoost, and LightGBM models, thereafter using SHAP analysis to interpret the factors influencing loan defaults. The key results reveal that the CatBoost model demonstrates superior performance, depending on the type of school and loan. Key risk factors for higher default risk included being a student of humanities, social sciences, Art and Physical Education and education; being male; and securing grades below 80. Conversely, the factors that reduced default risk included studying Medical Science, attending metropolitan universities, having grades above 90, and being under 24. Based on these findings, policies for loan screening and delinquency management are suggested to enhance financial stability. This study emphasizes the use of machine learning techniques and explainable AI (XAI) models to improve the accuracy of student loan default predictions and provide valuable policy insights. This study adds to existing literature by identifying the factors for both direct and income-contingent loan default.

목차

ABSTRACT
1. Introduction
2. Literature review
3. Method
4. Results
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0