메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김건민 (한양대학교) 이재헌 (한양대학교) 이승환 (한양대학교)
저널정보
대한용접·접합학회 대한용접·접합학회지 大韓熔接·接合學會誌 第42卷 第4號
발행연도
2024.8
수록면
345 - 356 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study developed a monitoring technology using a multi-sensor based deep learning model to diagnose hot cracking in aluminum alloy laser welding. Hot cracking that occurs during the laser welding process of aluminum alloys is difficult to diagnose accurately with a single sensor signal, necessitating multi-sensor based process monitoring technology. To monitor these hot cracks, laser-induced plasma, acoustic, and elastic wave signals were simultaneously measured using a spectrometer, non-contact acoustic sensor, and contact acoustic sensor during the overlap laser welding process of 6000 series aluminum alloys. The welded specimens were classified into normal and cracked specimens through bead analysis, and features related to hot cracking were extracted from each sensor signal to utilize the measured multi-sensor signals for monitoring. The extracted features from each signal were used as inputs for a Deep Neural Network (DNN) model capable of learning complex nonlinear relationships, and the hyper-parameters of the DNN model were optimized using a genetic algorithm. The DNN model trained with multi-sensor data diagnosed hot cracking with an accuracy of 93.75%.

목차

Abstract
1. 서론
2. 실험 방법
3. 공정 모니터링을 위한 방법론
4. 결과 및 논의
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090266189