메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Subhash Mondal (Central Institute of Technology Kokrajhar) Mithun Karmakar (Central Institute of Technology Kokrajhar) Amitava Nag (Central Institute of Technology Kokrajhar)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.4
발행연도
2024.8
수록면
354 - 360 (7page)
DOI
10.5573/IEIESPC.2024.13.4.354

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It has been generally observed that a set of clinically established features can be used to predict obesity. Due to lifestyle habits, most of the population deviates from the suggested treatment to control the state of obesity. This study is an experimental analysis of the effect of related features on the classification of obesity. Two research questions have been designed: “With what degree of accuracy can obesity be categorized using a feature vector (FS) with 16 features?” (RQ1), and, “Can a feature subset (FSS) classify the disease with an accuracy of over 90% compared to the accuracy obtained in RQ1?” (RQ2). It was observed that an FS comprising 16 features reflected an accuracy of 96.68% in the classification of obesity in RQ1, and an FSS comprising four features (selected using the SelectKBest algorithm) exhibited an accuracy of 88.38% on the same dataset. Since 88.38% is 91.42% of 96.68%, the FSS attains accuracy over 90% concerning FS in classifying obesity. Three machine learning (ML) models were selected based on the best accuracy values in the literature. Moreover, both RQ1 and RQ2 have far better accuracy than other methods.

목차

Abstract
1. Introduction
2. Related Study
3. RQ1
5. Experimental Results
6. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090271180