메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박기화 (Chungwoon University)
저널정보
한국무역연구원 무역연구 무역연구 제20권 제1호
발행연도
2024.2
수록면
161 - 176 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose – The purpose of this study is to analyze the acquisition motivations of startups by incumbent logistics companies, and explore how they affect the digital transformation of incumbent logistics companies. Design/Methodology/Approach – This study used a thematic analysis method to refine data on logistics company and startup mergers and acquisitions, and adopted an open coding procedure to ensure qualitative rigor. The research process consisted of coding primary data from Internet articles and interviews for terms containing acquisition objectives or motives, and grouping them according to the similarity of motives after primary data analysis. These were reorganized into six theory-based themes in the secondary analysis. Findings – The results identify six reasons why incumbent logistics companies acquire digital startups and the three digital strategy directions they pursue through acquisitions. First, the most important reason for the acquisition of startups is to acquire technology; second, to acquire technical and management skills, experience, and capabilities in the form of new employees; and third, to acquire customers, and methods to acquire new customers include expanding market share and entering new markets. Research Implications – Using empirical data from 39 cases, this study suggests that acquiring digital startups is the fastest way for incumbent logistics companies to acquire technology, a surefire way to acquire the capabilities and talent needed for digital transformation, and a way to expand markets while ensuring that digital transformation is not hindered by internal resistance.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0