메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
WANG Youcheng (Krirk University)
저널정보
한국유통과학회 유통과학연구 Journal of Distribution Science Vol.22 No.2
발행연도
2024.2
수록면
51 - 61 (11page)
DOI
10.15722/jds.22.02.202402.51

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This comprehensive study delves into the intricate relationship between customer engagement, perceived risk, and perceived value within China's burgeoning e-commerce livestreaming sector. It focuses on how different customer engagement types in livestreaming influence their perception of value and risk. Research Design, Data, and Methodology: Adopting a convenience sampling approach, this research scrutinizes data collected from 852 consumers actively involved in e-commerce livestreaming shopping. Participants provided their insights through a meticulously designed questionnaire survey. Structural equation modeling helped examine the interplay between customer engagement, perceived risk, and value. Results: Significant impacts of customer engagement on perceived value and risk were found. Observation-based, conversation-based, and action-based engagements enhance perceived risk, while conversation-based and action-based engagement reduce perceived risk. Interestingly, observation-based engagement did not significantly affect perceived risk. The study also uncovered that perceived risk negatively impacts perceived value. Conclusions: The research offers insights into customer behavior and value creation in e-commerce livestreaming. It underscores how different engagement types affect perceived value and risk, aiding e-commerce platforms and businesses in strategy development to improve customer experience and minimize risks, enhancing perceived value in this dynamic sector. Enhances understanding of customer engagement dynamics in China's e-commerce livestreaming, guiding strategic development.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0