메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤영인 (한양대학교) 정혜영 (한양대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제26권 제1호
발행연도
2024.2
수록면
163 - 174 (12page)
DOI
10.37727/jkdas.2024.26.1.163

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
인공지능의 발전으로 머신러닝과 딥러닝 모델이 다양한 산업에서 적용되어 좋은 성능을 보이고 있으며 최근 금융시장에서도 적용되는 사례가 증가하고 있다. 그러나 딥러닝 모델은 예측 결과가 나오게 된 과정과 해석을 파악하기에 어려움이 있다. 이는 결과에 대한 해석이 특히 중요시 되는 금융에 딥러닝 모델을 적용하는데 어려움이 있어 신뢰할 수 있는 모델에 대한 필요성이 대두되고 있다. 신뢰할 수 있는 모델이란 모델에 Dropout과 같은 변화에도 일관된 예측을 보이는 안정적인 모델로 모델의 불확실성을 통해 파악할 수 있다. 본 연구는 딥러닝 모델의 불확실성을 확인하여 신뢰할 수 있는 모델의 기준을 보이고 모델의 불확실성을 통해 이상 탐지하는 모델을 파악하고자 한다. 실험에서 전통적인 통계 모델 ARIMA(Auto Regressive Integrated Moving Average)와 시계열 데이터에 주로 쓰이는 딥러닝 모델인 CNN(Convolutional Neural Network), LSTM(Long Short Term Memory), MLP(Multi-Layer Perceptron), 및 CNN-LSTM 모델을 적용하였고 MC(Monte Carlo) Dropout을 통해 베이지안 관점에서 불확실성을 측정하였다. 실험 결과 다양한 패턴의 시계열 데이터에 대해 통계 모델보다 여러 딥러닝 모델이 성능이 좋음을 확인하였고 성능이 가장 우수하지는 않아도 불확실성이 적어 안정적인 모델이 LSTM 계열임을 확인하였다. 이를 통해 불확실성이 모델의 정확도와 함께 모델 선택 시 고려되어야 할 요소임을 확인하였고 불확실성이 큰 모델이 이상 탐지하므로 CNN 계열의 모델이 적합함을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0