메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정영주 (전남대학교) 최병주 (전남대학교) 최재성 (전남대학교) Myoung Sung-Gwan (Tropical and Subtropical Research Center, Korea Institute of Ocean Science) 양준용 (국립수산과학원 서해수산연구소 자원환경과) 한창훈 (국립수산과학원)
저널정보
한국해양과학기술원 Ocean and Polar Research Ocean and Polar Research Vol.46 No.1
발행연도
2024.3
수록면
17 - 30 (14page)
DOI
10.4217/OPR.2024005

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A real-time numerical prediction system was developed to predict sea surface temperature (SST) in Cheonsu Bay to minimize damages caused by marine heatwaves. This system assimilated observation data using an ensemble Kalman filter and produced 7-day forecasts. Bias in the temperature forecasts were corrected based on observed data, and the bias-corrected predictions were evaluated against observations. Using this real-time numerical prediction system, daily SSTs were predicted in real-time for 7 days from July to August 2021. The forecasted SSTs from the numerical model were adjusted using observational data for bias correction. To assess the accuracy of the numerical prediction system, real-time hourly surface temperature observations as well as temperature and salinity profiles observed along two meridional sections within Cheonsu Bay were compared with the numerical model results. The root mean square error (RMSE) of the forecasted temperatures was 0.58°C, reducing to 0.36°C after bias-correction. This emphasizes the crucial role of bias correction using observational data. Sensitivity experiments revealed the importance of accurate input of freshwater influx information such as discharge time, discharge volume, freshwater temperature in predicting real-time temperatures in coastal ocean heavily influenced by freshwater discharge. This study demonstrated that assimilating observational data into coastal ocean numerical models and correcting biases in forecasted SSTs can improve the accuracy of temperature prediction. The prediction methods used in this study can be applied to temperature predictions in other coastal areas.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0