메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
함형찬 (국방과학연구소) 서준원 (국방과학연구소) 김준희 (국방과학연구소) 장청수 (국방과학연구소)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제40권 제1호
발행연도
2024.2
수록면
115 - 122 (8page)
DOI
https://doi.org/10.7780/kjrs.2024.40.1.11

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Multi-object tracking (MOT) is a vital component in understanding the surrounding environ -ments. Previous research has demonstrated that MOT can successfully detect and track surroundingobjects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to besolved. When an object approaching from a distance is recognized, not only detection and tracking butalso classification to determine the level of risk must be performed. However, considering the erroneousclassification results obtained from the detection as the track class can lead to performance degradationproblems. In this paper, we discuss the limitations of classification in tracking under the classificationuncertainty of the detector. To address this problem, a class update module is proposed, which leveragesthe class uncertainty estimation of the detector to mitigate the classification error of the tracker. Weevaluated our approach on the VisDrone-MOT2021 dataset, which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quicklyclassifies the class as the object approaches and the level of certainty increases. In this manner, our methodoutperforms previous approaches across different detectors. In particular, the You Only Look Once(YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) incomparison to the previous state-of-the-art method. This intuitive insight improves MOT to trackapproaching objects from a distance and quickly classify them.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0