메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Christopher Retiti Diop Emane (Chungbuk National University) Hyeonbyeong Lee (Chungbuk National University) Dojin Choi (Changwon National University) Jongtae Lim (Chungbuk National University) Kyoungsoo Bok (Wonkwang University) Jaesoo Yoo (Chungbuk National University)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.18 No.4
발행연도
2022.12
수록면
1 - 9 (9page)
DOI
10.5392/IJoC.2022.18.4.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent decades, anomaly detection has undoubtedly become one of the most important areas of research. This is because applications such as financial transactions, medical fraud, and anomaly detection can be used to solve a wide range of real-life problems. Data from these applications can be modeled using large graphs of many different nodes and edges. Because of the size and heterogeneity of the data contained in the graph, it is a very difficult task to detect abnormal patterns. In this paper, we proposed a method for detecting abnormal patterns in a large homogeneous graph. The proposed method consisted of two steps. In the first step, the graph was transformed into a vector using a semi-supervised graph neural network (GCN). The second step was based on DBSCAN, an unsupervised clustering method. Various performance evaluations were performed to show the superiority of the proposed method. Experimental results showed that the proposed method could detect abnormal nodes with high accuracy in homogeneous static graphs.

목차

Abstract
1. Introduction
2. Related Works
3. The Proposed Anomaly Detection Method
4. Performance Evaluation
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090402309