메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang-Hoon Oh (Mokwon University)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.14 No.4
발행연도
2018.12
수록면
57 - 64 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Among many UNESCO world heritage sites in Korea, “Historic Village: Hahoe” is adjacent to Nakdong River and it is imperative to monitor the water level near the village in a bid to forecast floods and prevent disasters resulting from floods.. In this paper, we propose a recurrent neural network with multiple hidden layers to predict the water level near the village. For training purposes on the proposed model, we adopt the sixth-order error function to improve learning for rare events as well as to prevent overspecialization to abundant events. Multiple hidden layers with recurrent and crosstalk links are helpful in acquiring the time dynamics of the relationship between rainfalls and water levels. In addition, we chose hidden nodes with linear rectifier activation functions for training on multiple hidden layers. Through simulations, we verified that the proposed model precisely predicts the water level with high peaks during the rainy season and attains better performance than the conventional multi-layer perceptron.

목차

ABSTRACT
1. INTRODUCTION
2. A RECURRENT NEURAL NETWORK WITH MULTIPLE HIDDEN LAYERS
3. SIMULATIONS
4. CONCLUSIONS
REFERENCES

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090391123