메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mohsen Feizi (Eindhoven University of Technology) Bas Vermulst (Eindhoven University of Technology)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
2,052 - 2,058 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Transformers are of paramount importance in the implementation of different power converters such as pulsed power generators and switched-mode power supplies. The role of the transformer network is becoming even more prominent in applications that use networks of transformers or multi-winding configurations, such as series-connected transformers in pulsed power generators to provide several isolated voltages. Recently, toroidal cores have gained more popularity owing to offering compact size, less weight, and less leakage inductance due to the absence of gaps in their structure. However, their parasitic capacitance can adversely influence the performance of the power converters due to the resulting electromagnetic interference (EMI). Therefore, the parasitic capacitance of the transformer is a decisive factor in the system performance and it should be targeted to allow performance boosting. In this paper, the parasitic capacitance of transformers is modeled based on two different analytical methods. In addition, an accurate function is proposed to calculate effective parasitic capacitances considering all capacitive couplings, including turn-to-turn and turn-to-core capacitors. Afterward, these two methods are verified by planar, axisymmetric, and 3-D finite-element simulations via FEMM and COMSOL Multiphysics software, respectively. Finally, different analyses and simulations are compared with experimental results.

목차

Abstract
I. INTRODUCTION
II. PARASITIC CAPACITANCE OF THE TRANSFORMER
III. VERIFICATION
CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0