메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Min S. Jeong (Hanyang University ERICA) Ki H. Pyo (Hanyang University ERICA) Jin H. Jang (Hanyang University ERICA) Eun S. Lee (Hanyang University ERICA)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
1,225 - 1,230 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A novel approach to designing the optimal core structure of an electric vehicle (EV) wireless charger using a reinforcement learning (RL) algorithm based on Deep Q-Learning Network (DQN) is proposed in this paper. The conventional inductive power transfer (IPT) cannot be theoretically designed due to the nonlinearity of magnetic fields, which makes it challenging to optimize the core structure of the EV wireless charger. The proposed RL algorithm uses an agent based on the ε-greedy algorithm for the core selection process, which is evaluated in this paper. The agent learns from the reward (mutual inductance) and the state of the environment (finite-element-method simulation) to obtain the optimal core design for high mutual inductance. The proposed RL algorithm provides the optimal core structure based on WPT3/Z3 standard coil from J2954, which is superior to the conventional RL algorithm in terms of computation time and higher mutual inductance. The use of RL algorithms in designing optimal core structures for EV wireless chargers is an innovative approach that can significantly improve the efficiency of wireless charging systems. The proposed RL algorithm has the potential to reduce the design time and cost and improve the overall performance of wireless charging systems.

목차

Abstract
I. INTRODUCTION
II. NECESSITY OF THE REINFORCEMENT LEARNING
III. PROPOSED RL ALGORITHM FOR CORE DESIGN
IV. SIMULATION EVALUATION FOR THE RL ALGORITHMS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0