메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hyun Kim (ETRI (Electronics and Telecommunications Research Institute)) Injun Park (ETRI (Electronics and Telecommunications Research Institute)) Ingook Jang (ETRI (Electronics and Telecommunications Research Institute)) Seonghyun Kim (ETRI (Electronics and Telecommunications Research Institute)) Samyeul Noh (ETRI (Electronics and Telecommunications Research Institute)) Joonmyon Cho (ETRI (Electronics and Telecommunications Research Institute))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,542 - 1,547 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reinforcement learning (RL) has emerged as a promising approach for robot manipulation tasks. However, the data-intensive nature and substantial training time required by online RL techniques make them unsafe or impractical in certain situations like robot applications. This paper empirically investigates offline RL’s feasibility, generalization, and adaptability for robot manipulation tasks compared to online RL approaches. We apply several state-of-the-art algorithms, including AWAC, CQL, and IQL, to robot push tasks to examine the feasibility and practicality of offline RL for robotic manipulation. We also investigate how the characteristics of the offline dataset, such as size, exploration ratio, and randomization, impact the performance of the offline RL. The generalization capabilities and adaptability of these algorithms are assessed in unseen environments with varied object properties and physics settings. The results demonstrate that offline RL not only shows promising performance but also exhibits better generalization capabilities compared to online RL. In terms of adaptation, offline RL achieves significant performance improvements through small steps of online fine-tuning. These findings underline the potential of offline RL as an effective and practical approach for real-world robot manipulation tasks.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. METHODOLOGY
4. EXPERIMENTS AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266071