메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Oscar Burga Jonathan Villegas (BBVA Bank) Willy Ugarte (Universidad Nacional Mayor de San Marcos)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.18 No.1
발행연도
2024.3
수록면
47 - 56 (10page)
DOI
10.5626/JCSE.2024.18.1.47

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To this point, there has been extensive research investigating human-robot motion retargeting, but the vast majority of existing methods rely on sensors or multiple cameras to detect human poses and movements, while many other methods are not suitable for usage on real-time scenarios. The current paper presents an integrated solution for performing realtime human-to-robot pose retargeting utilizing only regular monocular images and video as input data. We use deep learning models to perform three-dimensional human pose estimation on the monocular images and video, after which we calculate a set of joint angles that the robot must utilize to reproduce the detected human pose as accurately as possible. We evaluate our solution on Softbank’s NAO robot and show that it is possible to reproduce promising approximations and imitations of human motions and poses on the NAO robot, although it is subject to the limitations imposed by the robot’s degrees of freedom, joint constraints, and movement speed limitations.

목차

Abstract
I. INTRODUCTION
II. RELATED WORKS
III. RETARGETING HUMAN POSES TO THE NAO ROBOT
IV. EXPERIMENTS
V. CONCLUSION AND PERSPECTIVES
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0