메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강성현 (Hanyang University) 이태희 (Hanyang University) 최명렬 (Hanyang University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제28권 제2호
발행연도
2024.6
수록면
46 - 51 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
화자인식은 개개인마다 다른 음성 주파수를 분석하여 미리 저장된 음성과 비교해 본인 여부를 판단하는 하나의 기술을 의미한다. 딥러닝 기반의 화자인식은 여러 분야에 적용되고 있으며, 펫 로봇도 그 중 하나이다. 하지만 펫 로봇의 하드웨어 성능은 딥러닝 기술의 많은 메모리 공간과 연산에 있어 매우 제한적인 상황이다. 이는 펫 로봇이 사용자와 실시간 상호작용에 있어 해결해야 할 중요한 문제점이다. 딥러닝 모델의 경량화는 위와 같은 문제를 해결하기 위한 하나의 중요한 방법으로 자리하였으며, 최근 많은 연구가 진행되고 있다. 이 논문에서는 특정한 명령어 형태인 펫 로봇용 음성 데이터 세트를 구축하고 잔차(Residual)를 활용한 모델들의 결과를 비교해 펫 로봇용 화자인식의 경량화 연구의 결과를 서술하며, 결론에서는 제안한 방법에 대한 결과와 향후 연구방안에 대해 서술한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090072918