메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황재민 (성균관대학교) 김지원 (성균관대학교) 윤성민 (성균관대학교)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제44권 제3호
발행연도
2024.6
수록면
33 - 42 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Building energy management systems (BEMS) are widely used to improve building energy efficiency. However, beyond simple monitoring and management, there are still limitations to implementing specific methods for energy savings and efficiency improvements during the operational phase. Simultaneously, the concept of a digital twin (DT) has been actively researched as a concept for the interaction of data and operational information between real buildings and virtual models. By integrating the DT concept into the BEMS, smooth communication between real buildings and virtual models is possible. A virtual model is defined as a mathematical model that describes physical behavior during the operational phases of a real building. This model can provide building energy efficiency methods based on real building data and the physical behavior of the building. Therefore, this study proposes a DT-based BEMS (DT-BEMS). A DT-BEMS consists of predicted mean vote (PMV) virtual sensors, energy sub-metering virtual sensors, and Holistic Operational Signature (HOS) analysis methods. Utilizing data from the BEMS, PMV virtual sensors obtain the PMV in real residential areas. After applying the virtual sensors, the HOS categorizes the operational states and offers energy optimization information. In this study, a DT-BEMS environment was developed for an office building. Thus, an organic process was realized in which real building data were transmitted through virtual models to provide energy efficiency information back to the target building.

목차

Abstract
1. 서론
2. 방법론
3. 적용
4. 결과 및 고찰
5. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090073835