메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이혜인 (SANGMYUNG University) 정진우 (SANGMYUNG University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제6호(통권 제243호)
발행연도
2024.6
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 다양한 분야에서 딥러닝이 사용되면서, 더 빠르고 정확한 결과를 내는 딥러닝이 더욱 중요해졌다. 이를 위해서는 많은 양의 저장 공간이 필요하고, 대용량 연산을 진행해야 한다. 이에 따라 여러 연구는 빠르고 정확하게 연산 처리가 가능한 하드웨어 가속기를 이용한다. 하지만 하드웨어 가속기는 CPU와 하드웨어 사이를 이동하면서 병목현상이 발생하게 된다. 따라서 본 논문에서는 하드웨어 가속기의 병목현상을 효율적으로 줄일 수 있는 데이터 프리패치 전략을 제안한다. 데이터 프리패치 전략의 핵심 아이디어는 Matrix Multiplication Unit(MMU)가 연산을 진행하는 동안 다음 연산에 필요한 데이터를 예측하여 로컬 메모리로 올려 병목현상을 줄인다. 또한, 이 전략은 듀얼 버퍼를 이용하여 읽고 쓰는 두 가지 동작을 동시에 진행하여 처리율을 높인다. 이를 통해 데이터 전송의 지연시간 및 실행 시간을 감소시킨다. 시뮬레이션을 통해 듀얼 버퍼를 이용한 병렬 프로세싱과 데이터 프리패치를 이용한 메모리 간 병목현상을 최대한 감소시켜 하드웨어 가속기의 성능이 24% 향상함을 알 수 있다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Performance Analysis
V. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0