메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Li Shang (Xianyang Normal University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.2
발행연도
2024.4
수록면
148 - 157 (10page)
DOI
10.5573/IEIESPC.2024.13.2.148

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Amazing changes have occurred in college education with the rapid development and popularization of science and technology in the information age. This paper proposes a design method for predicting the effect of college students’ sports performance training based on the optimized Apriori algorithm to develop a more standardized and complete physical education course training plan. The research introduces the gravitational search algorithm (GSA), and the particle swarm optimization algorithm (PSA) combines the two algorithms into a hybrid algorithm that integrates with the Apriori algorithm to form the GSA-PSO-A algorithm to predict the performance training effect of students. The algorithm was used to find valuable associated data in the data and finally conduct application analysis. The GSA-PSO algorithm reached a stable fitness value when the number of iterations was 200 and 100 in the unimodal and multimodal function tests, respectively, and the feasibility was the best. The GSA-PSO-A algorithm proposed by the research institute could effectively mine the training data of college students’ sports performance and provide a feasible path for improving the teaching of physical education courses to college students.

목차

Abstract
1. Introduction
2. Related Studies
3. Aerobics Expressive Training System based on Optimal Apriori Algorithm
4. System Performance Test and Algorithm Simulation Analysis
5. Conclusion
References

참고문헌 (23)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089686746