메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정하영 (티이에프) 박성욱 심춘보 (순천대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제27권 제3호
발행연도
2024.3
수록면
464 - 472 (9page)
DOI
10.9717/kmms.2024.27.3.464

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Pest outbreaks in citrus reduce the quality of the crop and reduce production, so it is necessary to detect outbreaks in a timely manner. Image classification models commonly used to diagnose crop dis- eases are highly accurate but costly to train and require high-performance equipment. Since devices utilized in the agricultural field are limited in terms of memory and power, efficient deep learning mod- els are needed. Therefore, in this paper, we studied a lightweight model for disease diagnosis in crops. We implemented a disease diagnosis model for crops using tangerine fruit and leaf images. The per- formance of the implemented models was compared through accuracy versus FLOPs, and MobileNet V3 Small was the best among the lightweight models. We further applied data balancing and performance enhancement techniques. When data balancing was performed, the average accuracy of the model de- creased, but the classes were more evenly classified. As for the performance improvement, the Label smoothing technique improved the accuracy by 1.2%. Therefore, it is recommended that the citrus pest diagnosis model for mobile devices should be preprocessed with data balancing and smoothing techni- ques and implemented using the MobileNet V3 Small model for optimal user experience and accuracy.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 제안하는 방법
4. 실험 결과
5. 결론
REFERENCE

참고문헌 (21)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089576218