메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Assem Utaliyeva (Pusan National University) Yoon-Ho Choi (Pusan National University)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제34권 제1호
발행연도
2024.2
수록면
143 - 156 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연합 학습(FL)은 여러 공동 작업자 간에 분산된 모델 학습을 위한 강력한 방법론으로 부상해 데이터 공유의 필요성을 없애준다. FL은 데이터 프라이버시를 보호하는 기능으로 호평을 받고 있지만, 다양한 유형의 프라이버시 공격으로부터 자유롭지 않다. 대표적인 개인정보 보호 기술인 차분 프라이버시(DP)는 이러한 취약점에 대응하기 위해 널리 사용된다. 이 논문에서는 기존의 작업별 적응형 DP 메커니즘을 FL 환경에 적용해 성능을 평가한다. 포괄적인 분석을 통해 다양한 DP 메커니즘이 공유 글로벌 모델의 성능에 미치는 영향을 평가하며, 특히 다양한 데이터 배포 및 분할 스키마에 주의를 기울인다. 이를 통해, FL에서 개인정보 보호와 유용성 간의 복잡한 상호 작용에 대한 이해를 심화하고, 성능 저하 없이 데이터를 보호할 수 있는 검증된 방법론을 제공한다.

목차

요약
ABSTRACT
I. Introduction
II. Background & Related Work
III. Task-specific Adaptive DP in FL setting
IV. Experiment
V. Conclusion
References

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0