메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승범 (충남대학교) 서정화 (충남대학교) 김동환 (충남대학교) 한상민 (삼성중공업) 김관우 (삼성중공업) 정성욱 (삼성중공업) 유병우 (충남대학교)
저널정보
대한조선학회 대한조선학회 논문집 대한조선학회논문집 제61권 제1호(통권 제253호)
발행연도
2024.2
수록면
8 - 18 (11page)
DOI
10.3744/SNAK.2024.61.1.8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The present study concerns reduced order modeling of a marine diesel engine, which can be used for outlier detection in status monitoring and carbon intensity index calculation. Principal Component Analysis (PCA) is introduced for the reduced order modeling, focusing on the feasibility of detecting and treating nonlinear variables. By cross-correlation, it is found that there are seven non-linear data channels among 23 data channels, i.e., fuel mode, exhaust gas temperature after the turbocharger, and cylinder coolant temperatures. The dataset is handled so that the mean is located at the nominal continuous rating. Polynomial presentation of the dataset is also applied to reflect the linearity between the engine speed and other channels. The first principal mode shows strong effects of linearity of the most data channels to show the linearity of the system. The non-linear variables are effectively explained by other modes. second mode concerns the temperature of the cylinder cooling water, which shows small correlation with other variables. The third and fourth modes correlates the fuel mode and turbocharger exhaust gas temperature, which have inferior linearity to other channels. PCA is proven to be applicable to data given in binary type of fuel mode selection, as well as numerical type data.

목차

1. 서론
2. 주성분 분석
3. 해석 대상 데이터
4. 데이터 해석 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089358470