메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
YaeEun Ahn (Seoul National University) Jungsuk Oh (Seoul National University)
저널정보
서비스사이언스학회 서비스 연구 서비스 연구 제13권 제4호
발행연도
2023.12
수록면
191 - 205 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공 지능 (AI), 특히 텍스트 생성 서비스 분야에서의 발전은 두드러지게 나타나고 있으며, AI-as-a-Service(AIaaS) 시장은 2028년까지 550억 달러에 달할 것으로 예상된다. 본 연구는 합성 텍스트 미디어 소프트웨어의 품질 요소를 탐구하였으며, 이를 위해 ChatGPT, Writesonic, Jasper, 그리고 Anyword와 같은 산업의 주요 서비스에 주목하였다. 소프트웨어 평가 플랫폼에서 수집된 4,000개 이상의 리뷰를 바탕으로, Gensim 라이브러리를 활용한 잠재 디리클레 할당 (LDA) 주제 모델링 기법을 적용하였다. 이 분석을 통해 11개의 주제가 도출되었다. 이후 이 주제들을 AICSQ 및 AISAQUAL과 같은 기존 논문에서 다루었던 AI 서비스 품질 차원과 비교 분석하였다. 리뷰에서는 가용성 및 효율성과 같은 차원이 주로 강조되었으며, 이전 연구에서 중요하게 여겨졌던 사람다움과 같은 요소는 본 연구에서 강조되지 않았다. 이러한 결과는 AI 서비스의 본질적 특성, 즉 사용자와의 직접적인 상호작용보다 의미론적 이해에 더 중점을 둔다는 특성 때문으로 해석된다. 본 연구는 단일 리뷰 원천 및 평가자들의 인구 통계의 특정성과 같은 잠재적 편향을 인정하며, 향후 연구 방향으로는 이러한 품질 차원이 사용자 만족도에 어떻게 영향을 미치는지, 그리고 개별 차원이 전체 평점에 어떻게 영향을 미치는지에 대한 깊은 분석을 제안한다.

목차

Abstract
1. Introduction
2. Theoretical Background
3. Methodology
4. Results & Analysis
5. Conclusion
References
요약

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0