메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
지성영 (한국외국어대학교) 이시윤 (한국외국어대학교) 최대우 (한국외국어대학교) 강기훈 (한국외국어대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제36권 제6호
발행연도
2023.12
수록면
515 - 528 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전자상거래 시장의 성장과 더불어 소비자들은 상품 및 서비스 구매 시 다른 사용자가 작성한 후기 정보에 기반하여 구매 의사를 결정하게 되며 이러한 후기를 효과적으로 분석하기 위한 연구가 활발히 이루어지고 있다. 특히, 사용자 후기에 대해 단순 긍/부정으로 감성분석하는 것이 아니라 다면적으로 분석하는 속성기반 감성분석 방법이 주목받고 있다. 속성기반 감성분석을 위한 다양한 방법론 중 최신 자연어 처리 기술인 트랜스포머 계열 모델을 활용한 분석 방법이 있다. 본 논문에서는 최신 자연어 처리 기술 모델에 두 가지 실제 데이터를 활용하여 다국어 사용자 후기에 대한 속성기반 감성분석을 진행하였다. 공개된 데이터 셋인 SemEval 2016의 Restraurant 데이터와 실제 화장품 도메인에서 작성된 다국어 사용자 후기 데이터를 활용하여 속성기반 감성분석을 위한 트랜스포머 계열에 모델의 성능을 비교하였고 성능 향상을 위한 다양한 방법론도 적용하였다. 다국어 데이터를 활용한 모델을 통해 언어별로 별도의 모델을 구축하지 않고 한가지 모델로 다국어를 분석할 수 있다는 점에서 효용 가치가 클 것으로 예상된다.

목차

Abstract
1. 서론
2. 선행연구
3. 모형
4. 실제자료 분석
5. 결론 및 시사점
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089259678