메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kwang-Hu Jung (Mokpo National Maritime University) Jung-Hyung Lee (Mokpo National Maritime University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제47권 제6호
발행연도
2023.12
수록면
317 - 324 (8page)
DOI
10.5916/jamet.2023.47.6.317

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, potentiodynamic polarization curves of carbon steel were employed to systematically characterize and predict its electrochemical corrosion behavior under varying environmental conditions. A three-factor full factorial design was utilized to vary critical parameters such as temperature, pH, and salinity, simulating diverse marine conditions. Using the TensorFlow 2.0 framework, a model based on an Artificial Neural Network (ANN) was constructed to predict the corrosion current density, a key indicator of corrosion rate. The ANN model demonstrated remarkable agreement with experimental data, achieving a correlation coefficient exceeding 0.98 for the training dataset. However, when extrapolating to conditions outside the training data, the model exhibited diminished accuracy. This emphasizes the potential of using ANN for corrosion prediction and underscores the importance of iterative model optimization in response to comprehensive datasets.

목차

Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0