메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한채림 (성신여자대학교) 이선진 (성신여자대학교) 이일구 (성신여자대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제6호
발행연도
2023.12
수록면
1,055 - 1,065 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 사물 인터넷을 활용한 산업 현장에서 수집되는 빅데이터를 활용해 복잡한 문제들을 해결하기 위하여 심층 강화학습 기술을 적용한 다양한 연구들이 이루어지고 있다. 심층 강화학습은 강화 학습의 시행 착오 알고리즘과 보상의 누적값을 이용해 자체 데이터를 생성하여 학습하고 신경망 구조와 파라미터 결정을 빠르게 탐색한다. 그러나 종래 방법은 학습 데이터의 크기가 커질수록 메모리 사용량과 탐색 시간이 기하급수적으로 높아지며 정확도가 떨어진다. 본 연구에서는 메타 학습을 적용한 연합학습 기반의 심층 강화학습 모델을 활용하여 55.9%만큼 보안성을 개선함으로써 프라이버시 침해 문제를 해결하고, 종래 최적화 기반 메타 학습 모델 대비 5.5% 향상된 97.8%의 분류 정확도를 달성하면서 평균 28.9%의 지연시간을 단축하였다.

목차

요약
ABSTRACT
I.. 서론
II. 관련 연구
III. 메타 학습을 적용한 연합학습 기반의 심층 강화학습 프레임워크
IV. 평가 및 분석
V. 결론
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088524729