메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장진혁 (숭실대학교) 안윤수 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제2호
발행연도
2022.4
수록면
405 - 416 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
AI기술은 데이터 기반의 기계학습을 이용하여 삶의 질을 높여주고 있다. 기계학습을 이용시, 분산된 데이터를 전송해 한곳에 모으는 작업은 프라이버시 침해가 발생할 위험성이 있어 비식별화 과정을 거친다. 비식별화 데이터는 정보의 손상, 누락이 있어 기계학습과정의 성능을 저하시키며 전처리과정을 복잡하게한다. 이에 구글이 2017년에 데이터의 비식별화와 데이터를 한 서버로 모으는 과정없이 학습하는 방법인 연합학습을 발표했다. 본 논문은 실제 금융데이터를 이용하여, K익명성, 차분프라이버시 재현데이터의 비식별과정을 거친 데이터의 학습 성능과 연합학습의 성능간의 차이를 비교하여 효용성을 분석하였으며, 이를 통해 연합학습의 우수성을 보여주고자 한다. 실험결과 원본데이터 학습의 정확도는 91% K-익명성을 거친 데이터학습은 k=2일 때 정확도 79%, k=5일 때 76%, k=7일 때 62%, 차분프라이버시를 사용한 데이터학습은 ε=2일 때 정확도 52%, ε=1일 때 50%, ε=0.1일 때 36% 재현데이터는 정확도 82%가 나왔으며 연합학습의 정확도는 86%로 두번째로 높은 성능을 보여 주었다.

목차

요약
ABSTRACT
I. 서론
II. 관련연구
III. 금융데이터 익명화 케이스 스터디
IV. 고찰
V. 결론
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001127819