메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shion Watanabe (Kyushu Institute of Technology) Tohru Kamiya (Kyushu Institute of Technology) Takashi Terasawa (University of Occupational and Environmental Health) Takatoshi Aoki (University of Occupational and Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,733 - 1,736 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Lung cancer is the most common cause of death from this cancer. Diagnosis is made mainly by biopsy, which checks for mutations in the driver genes of lung cancer. If there is a mutation, molecularly targeted drugs with higher therapeutic efficacy can be used. However, it is difficult for physicians to make a decision and places a heavy burden on patients. To solve this problem, a computer aided diagnosis (CAD) system is needed to identify the presence or absence of driver gene mutations from CT images. In this paper, Radiomics is used to extract features from 3D lung cancer in CT images and analyze them using machine learning to classify the presence or absence of mutations. Because the features obtained is huge, dimensionality reduction is performed using Null Importance. Furthermore, the accuracy is improved by adding gender as clinical information. The proposed method was applied to a dataset consisting of 175 cases. As a result, we obtained an AUC (Area Under the Curve) of 0.985, accuracy of 92.0%, true positive rate of 85.7%, and false positive rate of 2.20%.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. EXPERIMENTS AND RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266393