메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dong-Won Lim (University of Suwon)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,323 - 1,328 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial Intelligence (AI) gives a new way to engineering practices. The inverse kinematics (IK) solutions of a robot manipulator could be done by conventional ways such as geometric, algebraic, or Jacobian methods, which have drawbacks. The different practice that only a few points (training samples) of the end effector are recorded can be planned to operate a manipulator by AI. This practice will no longer need cumbersome IK calculations to plan a manipulator’s motion. In other words, IK analysis is approached by the Artificial Neural Networks (ANN). More training samples and hidden neurons are, better the IK function fitted by ANN performs. However, with a high number of samples and hidden neurons, the procedure becomes impractical. This paper attempts to provide a mathematical framework for a reasonable number of ANN training samples for acceptable operations. The study was applied to a 3 degrees-of-freedom (DOF) manipulator. Mathematical bound estimates, knowing trained points can be almost exactly approximated, are derived between trained and untrained points. Through simulation studies, errors by bound estimates and by ANN were compared. Also, the smallest sample set could be drawn; 20 times greater sampling than an allowable tracking error size was found.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. ARTIFICIAL NEURAL NETWORK
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265743