메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Nwe Zin Oo (University of Computer Studies, Hpa-an)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
568 - 572 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The general concept of filtering is to modify or enhance the image data by removing noises for smoothing, sharpening, and edge enhancement. There are mainly two types of filtering methods in image processing, namely linear and non-linear filters. This paper proposes the energy consumption of linear and non-linear filters on multi-core architecture by using AVX and OpenMP. Many researchers have contributed to the computation time of well-known filters such as the mean, median, Gaussian, Laplacian, IRR filters, and so on. Although these filters have been experimented related with to execution time, the measurement of energy consumption of linear and non-linear filters has still remained a gap for image processing. For this reason, this paper focuses on the experiments for the energy consumption of a linear filter (Gaussian filter) and a non-linear filter (median filter). Moreover, the parallel implementation of these filters and the serial computation also have been tested on CPU and GPU in the case of examining the measuring the amount of energy consumption of them. According to the experimental results of the matrix kernel becomes 4069×4096, in average, a linear filter is more consumed than a non-linear filter in the case of energy consumption of about 5.1% and 3.9% in Watt and more efficient performance of about 2.5% and 1.12% in GFLOPS when testing on CPU and GPU respectively, when utilizing AVX and OpenMP in the parallel versions of these filters.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. FILTERING METHODS
4. PARALLEL IMPLEMENTATION AND ENERGY CONSUMPTION
5. EXPERIMENTS AND COMPARISONS
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264602