메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mohammed Irfan Rashed (Korea Advanced Institute of Science and Technology (KAIST)) Hyochoong Bang (Korea Advanced Institute of Science and Technology (KAIST))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
161 - 166 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the CisLunar economy takes its pace towards growing competence and demanding solutions, the need for enhanced methodologies to systematically upgrade performance and sustainability is inevitable. Small Satellites have been a major portion of this CisLunar region ever since the Moon missions using CubeSats started engaged the space industry towards real problems and created a wave of extended scope for research in this domain. This paper will present the essential novel methodology to address the issue of in-orbit anomalies of the small satellite constellations to be solved autonomously for the lifetime of their mission. The technique uses the Kalman filter with an addition of the ‘preferential autonomous logic’ to choose solutions in orbit as the anomalies occur. As the small satellites are distributed across a coverage over Earth, the synchronization with all the satellites in the same or different plane is by far the most challenging aspect of managing a constellation. With small satellites, the scenario is even more complicated and sensitive to handle. Hence, with this paper, the technique of preferential-Kalman filtering in each plane is introduced with extensive research on literature and analysis followed by discussions on the achieved results and the conclusions.

목차

Abstract
1. INTRODUCTION
2. LITERATURE STUDY
3. CONSTELLATION DYNAMIC WITH EXTENDED KALMAN FILTERING
4. PROPOSED METHODOLOGY
5. SETUP FOR ANALYSIS
6. RESULTS & DISCUSSIONS
7. DISCUSSIONS
8. CONCLUSION & FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264068