메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Taek Geun Lee (Department of Electronics and Information Engineering Korea Aerospace University Gyeonggi-do 10540 Korea) Yu Dam Lee (Department of Electronics and Information Engineering Korea Aerospace University Gyeonggi-do 10540 Korea) Hyung Keun Lee (Department of Electronics and Information Engineering Korea Aerospace University Gyeonggi-do 10540 Korea)
저널정보
사단법인 항법시스템학회 Journal of Positioning, Navigation, and Timing Journal of Positioning, Navigation, and Timing 제12권 제1호
발행연도
2023.3
수록면
11 - 22 (12page)
DOI
10.11003/JPNT.2023.12.1.11

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we propose an efficient satellite selection method for multi-constellation GNSS. The number of visible satellites has increased dramatically recently due to multi-constellation GNSS. By the increased availability, the overall GNSS performance can be improved. Whereas, due to the increase of the number of visible satellites, the computational burden in implementing advanced processing such as integer ambiguity resolution and fault detection can be increased considerably. As widely known, the optimal satellite selection method requires very large computational burden and its realtime implementation is practically impossible. To reduce computational burden, several sub-optimal but efficient satellite selection methods have been proposed recently. However, these methods are prone to the local optimum problem and do not fully utilize the information redundancy between different constellation systems. To solve this problem, the proposed method utilizes the inter-system biases and geometric assignments. As a result, the proposed method can be implemented in real-time, avoids the local optimum problem, and does not exclude any single-satellite constellation. The performance of the proposed method is compared with the optimal method and two popular sub-optimal methods by a simulation and an experiment.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0