메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용현 (한양대학교) 최진탁 신동빈 (헥사휴먼케어) 지영훈 (헥사휴먼케어) 장혜연 (헥사휴먼케어) 한창수 (헥사휴먼케어) 이연준 (한양대학교)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇학회 논문지 제18권 제4호
발행연도
2023.12
수록면
385 - 391 (7page)
DOI
10.7746/jkros.2023.18.4.385

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the elderly population, sarcopenia occurs due to physical aging, leading to movement restrictions and loss of function. This results in dependence on daily activities and limitations in participation, ultimately decreasing the overall quality of life. In this study, we propose an algorithm designed to enable patients with sarcopenia to perform sit-to-stand and stand-to-sit movements seamlessly in their daily lives. The algorithm incorporates a wearable robot for muscle support and includes algorithms for standing and seated muscle strength support. To validate the algorithm’s performance, EMG sensors were attached to the Rectus Femoris and Biceps Femoris muscles. The participants underwent two scenarios: one without wearing the device and one with the device providing muscle strength support, performing sit-to-stand and stand-to-sit motions for one minute in each case. The results showed a 16% increase in the EMG peak value of the Rectus Femoris muscle during standing motion (p=0.009). On the right side, there was a roughly 20% decrease (p=0.018) during standing and a 21% decrease (p=0.014) during sitting motion. In the future, we aim to gather additional data to further refine the algorithm. Our goal is to develop an optimal muscle strength support algorithm based on this data, making it applicable for real-life use by patients with sarcopenia.

목차

Abstract
1. 서론
2. H30A : 고관절 근력 지원 웨어러블 로봇
3. SITST, STTSI 근력지원 알고리즘
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088229603